Game of Life Toggling a Cell

Lecture 14

Robb T. Koether
Hampden-Sydney College

Wed, Sep 25, 2019

Outline

(9) User Interface
(2) Detecting the Mouse-Click
(3) Converting to World Coordinates

Outline

(9) User Interface

(2) Detecting the Mouse-Click

(3) Converting to World Coordinates

User Interface

- The user will toggle the state of a cell by clicking on that cell.
- The program must
- Detect the mouse-click.
- Convert window coordinates to world coordinates.
- Determine the row and column number of the cell.
- Reverse the state of the cell.

Outline

(1) User Interface

(2) Detecting the Mouse-Click

(3) Converting to World Coordinates

Detecting the Mouse-Click

MouseButton Callback Function

```
void mouseButtonCB (GLFWwindow* window,
GLint button, GLint action, GLint mods);
```

- When the mouse is clicked in the graphics window, the mouse button callback function in invoked.
- The parameter button is one of
- GLFW_MOUSE_BUTTON_LEFT
- GLFW_MOUSE_BUTTON_RIGHT
- The parameter action is one of
- GLFW_PRESS
- GLFW_RELEASE

Locating the Mouse-Click

glfwGetCursorPos() Function

```
void glfwGetCursorPos(GLFWwindow* window,
    GLdouble* xpos, GLdouble* ypos)
```

- The glfwGetCursorPos() function will return the window coordinates of the cursor.
- The x-coordinate xpos is measured from the left edge of the window.
- The y-coordinate ypos is measured down from the top edge of the window.
- It is recommended that you subtract ypos from the window height.

Related Functions

CursorPos Callback Function

$$
\begin{aligned}
& \text { void cursorPosCB(GLFWwindow* window, } \\
& \text { GLdouble xpos, GLdouble ypos) }
\end{aligned}
$$

```
glfwGetMouseButton() Function
    int glfwGetMouseButton(GLFWwindow* window,
        GLint button);
```

- These functions are useful for processing dragging objects (moving the cursor with the mouse button down).

Outline

(1) User Interface

(2) Detecting the Mouse-Click

(3) Converting to World Coordinates

Converting to World Coordinates

- In window coordinates, the x-axis goes from 0 to fb_width and the y-axis goes from 0 to fb_height.
- In world coordinates, the x-axis goes from xmin to xmax and the y-axis goes from ymin to ymax.
- In the Game of Life program, xmin $=-x m a x$ and $y m i n=-y m a x$.

- First, scale the coordinates from units in the window system to units in the world system.

$$
\begin{aligned}
& x_{\text {wor }}=x_{\text {win }} \times\left(\frac{x \text { max }-x \min }{\text { width }}\right), \\
& y_{\text {wor }}=y_{\text {win }} \times\left(\frac{y \text { max }-y \min }{\text { height }}\right) .
\end{aligned}
$$

- Then, apply a translation as an offset from the lower-left corner (in world coordinates) to align the respective origins.

$$
\begin{aligned}
& x_{\text {wor }}=x \min +x_{\text {win }} \times\left(\frac{x m a x-x \min }{\text { width }}\right) \\
& y_{\text {wor }}=y \min +y_{\text {win }} \times\left(\frac{y m a x-y \min }{h e i g h t}\right) .
\end{aligned}
$$

